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1 Exercise 2.1

𝑃(𝐴𝑡 = arg max
𝑎

𝑄(𝑎)) = 𝑃(𝐴𝑡 = arg max
𝑎

𝑄(𝑎)|1 − 𝜖) × (1 − 𝜖)
+ 𝑃(𝐴𝑡 = arg max

𝑎
𝑄(𝑎)|𝜖) × 𝜖

= 1 × (1 − 𝜖) + 1
2 × 𝜖

= 0.5 + 0.25 = 0.75
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2 Exercise 2.2
Let’s step through each time step and see

Time step 1 𝐴1 = 1, 𝑄1(1) = −1 and the rest are 0.

Time step 2 𝐴2 = 2, 𝑄2(2) = 1, 𝑄2(1) = −1 and the rest are 0.

Time step 3 𝐴3 = 2, 𝑄3(2) = −1
2 , 𝑄3(1) = −1 and the rest are 0.

Time step 4 𝐴4 = 2, 𝑄4(2) = 1
3 , 𝑄4(1) = −1 and the rest are 0.

Time step 5 𝐴5 = 3, 𝑄5(2) = 1
3 , 𝑄5(1) = −1 and the rest are 0.

A random action selection definitely occured at time steps 4 and 5.

A random action selection possibly occured on time steps 1, 2 and 3.

3 Exercise 2.3
In the long run as the number of time-steps approaches infinity. That means
for methods which 𝜖 > 0 the

action value would approach it’s true mean value due to the law of large numbers.
i.e. 𝑄𝑡(𝑎) → 𝑄(𝑎) as 𝑡 → ∞.

For 𝜖 = 0:

0.2 ≤ 𝑃(𝑜𝑝𝑡𝑖𝑚𝑎𝑙) ≤ 0.4

For 𝜖 = 0.01 as:

𝑃(𝑜𝑝𝑡𝑖𝑚𝑎𝑙) = 𝜖 ∗ 0.1 + (1 − 𝜖) = 0.01 ∗ 0.1 + 0.99 = 0.991

For 𝜖 = 0.1

𝑃(𝑜𝑝𝑡𝑖𝑚𝑎𝑙) = 𝜖 ∗ 0.1 + (1 − 𝜖) = 0.1 ∗ 0.1 + 0.9 = 0.91

We expect 𝜖 = 0.01 to outperform the other configurations in the long-run.
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4 Exercise 2.4

𝑄𝑛+1 = 𝑄𝑛 + 𝛼𝑛[𝑅𝑛 − 𝑄𝑛]
= 𝑄𝑛 + 𝛼𝑛𝑅𝑛 − 𝛼𝑛𝑄𝑛
= (1 − 𝛼𝑛)𝑄𝑛 + 𝛼𝑛𝑅𝑛
= (1 − 𝛼𝑛)(𝑄𝑛−1 + 𝛼𝑛−1[𝑅𝑛−1 − 𝑄𝑛−1]) + 𝛼𝑛𝑅𝑛
= (1 − 𝛼𝑛)𝑄𝑛−1 + (1 − 𝛼𝑛)𝛼𝑛−1𝑅𝑛−1 − (1 − 𝛼𝑛)𝛼𝑛−1𝑄𝑛−1 + 𝛼𝑛𝑅𝑛
= (1 − 𝛼𝑛)(1 − 𝛼𝑛−1)𝑄𝑛−1 + (1 − 𝛼𝑛)𝛼𝑛−1𝑅𝑛−1 + 𝛼𝑛𝑅𝑛

=
𝑛−1
∏
𝑖=0

(1 − 𝛼𝑛−𝑖)𝑄1 +
𝑛

∑
𝑖=1

𝛼𝑖
𝑛

∏
𝑗=𝑖+1

(1 − 𝛼𝑗)𝑅𝑖

5 Exercise 2.5
Coming soon

6 Exercise 2.6
With optimistic initialization the agent explores more in the beginning as it tries
more actions. Thus leading to more spikes due to having more volatility in the
action values. Whereas, in the 𝜖 greedy method we get far lass exploration in
the beginning and therefore a slower learning rate and less volatility.

7 Exercise 2.7
From Exercise 2.4 we know that:

𝑄𝑛+1 =
𝑛−1
∏
𝑖=0

(1 − 𝛽𝑛−𝑖)𝑄1 +
𝑛

∑
𝑖=1

𝛽𝑖
𝑛

∏
𝑗=𝑖+1

(1 − 𝛽𝑗)𝑅𝑖

Now let’s expand the first term with 𝛽𝑛 = 𝛼
𝑂𝑛

and 𝑂𝑛 = 𝑂𝑛−1 + 𝛼(1 − 𝑂𝑛−1):

𝑛−1
∏
𝑖=0

(1 − 𝛽𝑛−𝑖)𝑄1 = (1 − 𝛽𝑛)(1 − 𝛽𝑛−1)...(1 − 𝛽1)𝑄1

= (𝑂𝑛 − 𝛼
𝑂𝑛

)(𝑂𝑛−1 − 𝛼
𝑂𝑛−1

)...(𝑂1 − 𝛼
𝑂1

)𝑄1

= ((1 − 𝛼)𝑂𝑛−1
𝑂𝑛

)( (1 − 𝛼)𝑂𝑛−2
𝑂𝑛−1

)...( (1 − 𝛼)𝑂0
𝑂1

)

= 0 because 𝑂0 is 0
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Q.E.D

𝑄𝑛+1 =
𝑛

∑
𝑖=1

𝛽𝑖
𝑛

∏
𝑗=𝑖+1

(1 − 𝛽𝑗)𝑅𝑖

8 Exercise 2.8
It is because the uncertainty of UCB term for each action follows 𝑈𝐶𝐵 → ∞
as 𝑁(𝑎) → 0. Since we have 10 actions (10 arms) the agent will explore all 10
actions in the first 10 steps, resulting in selecting the optimal action early on
during training thus resulting in a spike in step 11. Once all actions have been
tried the UCB term reduces significantly since now we have 𝑁(𝑎) = 1 for all
actions.

9 Exercise 2.9
Let’s recall the sigmoid function:

𝜎(𝑥) = 1
1 + 𝑒−𝑥

Now for two actions 𝑎1 or 𝑎2 the softmax distribution is as follows:

𝑃𝑟{𝐴𝑡 = 𝑎} = 𝑒𝐻𝑡(𝑎)

𝑒𝐻𝑡(𝑎) + 𝑒𝐻𝑡(𝑏)

= 𝑒𝐻𝑡(𝑎)

𝑒𝐻𝑡(𝑎)(1 + 𝑒𝐻𝑡(𝑏)−𝐻𝑡(𝑎))
= 1

1 + 𝑒−(𝐻𝑡(𝑎)−𝐻𝑡(𝑏))

10 Exercise 2.10
Coming soon
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