
Forward Kinematics: A robotics classic
Alireza Azimi Veronika Ivanytska

2025-06-28

Introduction

Have you ever tried to pinpoint the exact position of your hand in 3D space just by looking
at it? It’s not so easy! In robotics, knowing the precise location of an end-effector—like a
robot’s hand—is essential for tasks such as picking up objects or assembling parts. This is
where forward kinematics come in: it’s the mathematical process that allows us to calculate the
position and orientation of a robot’s end-effector based on its joint angles and link lengths.

But how do we actually perform these calculations? One of the most widely used methods is
the Denavit-Hartenberg (DH) transformation. By inputting the robot’s joint angles and link
dimensions, the DH transformation gives us the exact cartesian coordinates and orientation
of the end-effector in space. This powerful technique forms the foundation for controlling and
programming robotic arms in real-world applications.

Denavit-Hartenberg (DH) Transformation

𝑇 𝑖+1
𝑖 =

⎡
⎢⎢
⎣

cos 𝜃𝑖 − sin 𝜃𝑖 cos 𝛼𝑖 sin 𝜃𝑖 sin 𝛼𝑖 𝑎𝑖 cos 𝜃𝑖
sin 𝜃𝑖 cos 𝜃𝑖 cos 𝛼𝑖 − cos 𝜃𝑖 sin 𝛼𝑖 𝑎𝑖 sin 𝜃𝑖

0 sin 𝛼𝑖 cos 𝛼𝑖 𝑑𝑖
0 0 0 1

⎤
⎥⎥
⎦

Where the parameters are as follows:

• 𝜃𝑖: Joint angle — rotation about the (𝑧𝑖−1) axis

• 𝑑𝑖: Link offset — translation along the (𝑧𝑖−1) axis

• 𝑎𝑖: Link length — translation along the (𝑥𝑖) axis

• 𝛼𝑖: Link twist — rotation about the (𝑥𝑖) axis

1

𝑇 1
0 represents a transformation between frame 0 (the base) and frame 1 which is connected

through link 1.

Example 1: One Link and One Angle

Let’s warmup with the simplest example we can think of. When we have one link. This is quite
simple and doesn’t require the transformation as we can simply solve it using trigonometry:

• 𝜃𝑖: 60 degrees (𝜋/3)
• 𝑑𝑖: 0

• 𝑎𝑖: 1 m

• 𝛼𝑖: 0

𝑇 1
0 =

⎡
⎢⎢
⎣

cos 𝜋
3 − sin 𝜋

3 0 cos 𝜋
3

sin 𝜋
3 cos 𝜋

3 0 sin 𝜋
3

0 0 1 0
0 0 0 1

⎤
⎥⎥
⎦

=
⎡
⎢
⎢
⎣

1
2 −

√
3

2 0 1
2√

3
2

1
2 0

√
3

2
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎦

The x,y coordinates of the end effector belong to (𝑇 1
0)14 and (𝑇 1

0)24 respectively.

Let’s put this into code using python:

import numpy as np
def dh_matrix(theta, d, a, alpha):

"""
Computes the Denavit-Hartenberg (DH) transformation matrix.
Parameters:
- theta (float): The joint angle in radians.
- d (float): The offset along the previous z-axis to the common normal.
- a (float): The length of the common normal (distance between z-axes).
- alpha (float): The angle in radians between the previous z-axis and the current z-axis.

Returns:
- numpy.ndarray: A 4x4 transformation matrix representing the DH parameters.
"""
c_theta, s_theta = np.cos(theta), np.sin(theta)
c_alpha, s_alpha = np.cos(alpha), np.sin(alpha)
return np.array([

[c_theta, -s_theta * c_alpha, s_theta * s_alpha, a * c_theta],
[s_theta, c_theta * c_alpha, -c_theta * s_alpha, a * s_theta],

2

[0, s_alpha, c_alpha, d],
[0, 0, 0, 1]

])

Now let’s test our function on our example:

T_0 = dh_matrix(np.deg2rad(60), 0, 1, 0)
T_0

array([[0.5 , -0.8660254, 0. , 0.5],
[0.8660254, 0.5 , -0. , 0.8660254],
[0. , 0. , 1. , 0.],
[0. , 0. , 0. , 1.]])

Example 2: Extend to 2 Links

Link 1:

• 𝜃𝑖: 60 degrees (𝜋/3)
• 𝑑𝑖: 0

• 𝑎𝑖: 1 m

• 𝛼𝑖: 0

Link 2:

• 𝜃𝑖: 30 degrees (𝜋/3)
• 𝑑𝑖: 0

• 𝑎𝑖: 1 m

• 𝛼𝑖: 0

T_0 = dh_matrix(np.deg2rad(60), 0, 1, 0)
T_1 = dh_matrix(np.deg2rad(-30), 0, 1, 0)

Chain together
T = T_0 @ T_1
T

3

array([[0.8660254, -0.5 , 0. , 1.3660254],
[0.5 , 0.8660254, 0. , 1.3660254],
[0. , 0. , 1. , 0.],
[0. , 0. , 0. , 1.]])

Explore

A good exercise would be to extend the tranformation to 3 dimensions. Have fun!

4

	Introduction
	Denavit-Hartenberg (DH) Transformation
	Example 1: One Link and One Angle
	Example 2: Extend to 2 Links
	Explore

